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Abstract

The paper deals with the early stage of impact of a solid cylindrical body on the surface of a cylindrical cavity for zero

and non-zero gap between the cavity surface and the body surface. As a result, the stated mixed non-stationary

boundary value problem with the unknown variable in the time boundary is formulated. Its solution is reduced to a

joint solution of an infinite system of linear integral Volterra equations of the second kind and the differential equation

of the body movement. In the case of simplified formulation, the solution is reduced to the infinite sequence of the linear

integral Volterra equations. Hydrodynamic and kinematic characteristics are also obtained.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The construction of underwater vehicles using the principles of so-called supercavitational motion is one direction of

sea transport development. The phenomenon of supercavitation allows one to reduce considerably the hydrodynamic

resistance of a liquid. It occurs when a cavity is formed from water vapour or gas bubbles upstream of a body

submerged in a fast-moving stream. If the moving object is completely surrounded by a renewable gas shell, resistance

to body movement is considerably reduced. The body, in fact, moves in a gas-vapour cavity, having contact with the

liquid only in its frontal part, which is equipped with a cavitator. The principles of hydrodynamics of high velocities

have been developed and formulated in a monograph by Logvinovich (1969). Over the last decade, research on

supercavitational motion has been carried out in Russia, USA and Ukraine. Rates of movement, close to sonic velocity

in water, have been obtained in the laboratory environment (Savchenko et al., 1998). The perspectives of application are

quite attractive, and it elicits interest among researchers for the problem of supercavitation as a problem of

hydromechanics concerning high-speed movement. Many modern results in this direction can be seen in papers of Lu,

He and Wu (2000) and Young (2007).

One of the peculiarities of the process mentioned above is the almost inevitable lateral motion of the body in the

cavity due to instability of the primary (longitudinal) movement. Such a lateral motion develops in a wide range of

velocities and consists of alternate impacts of the body with the lower and upper parts of the cavity surface. This

undesirable phenomenon leads to the loss of energy in the primary movement and can cause its cessation. Study of
e front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

C sound velocity

d the gap between the body surface and the

cavity surface

J1ðxÞ Bessel cylindrical function

F hydrodynamic force

KnðsrÞ McDonald cylindrical functions of imagin-

ary argument

p hydrodynamic pressure

Rb certain linear dimension (cylinder radius)

Rc cavity radius

r; y polar coordinates

t time

V velocity of cavity surface deformation

v0ðtÞ velocity of the body penetration into fluid

x; z Cartesian coordinates

z� depth of penetration

m linear mass of the body

r fluid density

j wave potential
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lateral impact motion and the establishment of regularity of its existence and development should be very useful, since it

can lead to means of stabilization the longitudinal movement. Research on this matter was conducted mainly on the

assumption of incompressible liquid (Savchenko et al., 1999; Parushev, 2002). The model of incompressible liquid does

not provide reliable results on the early stage of impact interaction (according to this model, the value of the

hydrodynamic pressure at the initial moment of interaction attains an infinitely large value, which is contrary to

common sense). Additionally, research on this process seems to be expedient for an arbitrary ratio of specific cross-

section values of the cavity and the body. It can be supposed that, for near cross-sections of the body and the cavity,

stabilization of the basic (longitudinal) motion is rather relevant, at least in terms of energy.

Kubenko (2006) suggests the foundations of a relevant approach to the research of impact interaction of a rigid long

circular cylindrical body with the surface of a circular cylindrical cavity in an ideal compressible fluid. In the general

case, a non-stationary mixed boundary value problem of hydromechanics with an unknown variable boundary is

formulated. The asymptotic solution is obtained for the initial stages of the interaction. For the case when the radius of

the body cross-section is substantially smaller than the cavity radius, a numerical solution is obtained.

The present paper, an extension of the paper by Kubenko (2006), suggests a technique and derives a numerical

solution for an arbitrary ratio of radii of cavity and body cross-sections. The analysis of peculiarities of the impact

interaction process, depending on initial physical and mechanical parameters, is performed. The comparison of

numerical and asymptotic solutions is carried out.

In Section 2, a statement of the nonstationary initial boundary value problem with the unknown time-dependent

boundary is given. The stated problem consists of the combined system of equations: the hydrodynamic part (which

describes a process of interaction between the body and the fluid); the equation of body motion across the cavity

surface; and the relation for determination of boundary points of the varying contact domain. Corresponding boundary

conditions are given separately on the body-fluid contact surface and on the free surface of the cavity. In general, this

nonlinear problem requires corresponding methods of solution, which are developed for two specific cases of a ratio of

the cross-section specific dimensions of the body and the cavity: (i) for small finite difference in radii and (ii) for

coincidence of the radii, in Sections 3 and 4, respectively.

We shall expand the unknown quantities into Fourier series. To solve the auxiliary non-mixed problem, we will use

the Laplace transform in time. In all cases, concerning the coefficients of corresponding Fourier series for pressure

(velocity), a resolving infinite system of Volterra integral equations of the second kind is obtained. Such a system should

be solved jointly with the equation of body motion and the relation determining the contact area. The conventional

integral equations are also presented; it allows one to obtain the approximate solution of the problem with much less

effort. In Section 5 the asymptotic solution of the problem for all three cases corresponding to the initial stage of the

interaction is obtained. In Section 6 the numerical solution for Cases 1 and 2 is proposed as the one most often used in

practice. Finally, in Section 7 the analysis of results obtained is carried out.

It should be mentioned that the present study considers the fluid at rest. Solution of the problem on the body cross-

impact motion in a cavity, taking into consideration axial movement of fluid as well as the evaluation of the

contribution to the process made by the impact on water and the mentioned motion, will be carried out separately.
2. Problem statement

As previously mentioned in the Introduction, it is an experimentally established fact (Savchenko et al., 1998) that

under high velocity of motion a cavity develops around the body. A characteristic of the generating ellipsoid-shaped
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Fig. 1. Body moving in cavity.
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supercavity is its big comparative elongation—aspect ratio of 70 to 200. The moving body is fully inside the cavity,

having contact with it only in its front part.

Hence, the drag is applied to the body front-section, i.e., ahead of its centre of mass that causes violation of the

classical condition of motion stability in a continuum—Fig. 1. Because of that, with velocity of the body movement in a

water around 300–1000m/s, the existence of initial perturbations in the angle of attack and angular velocity of the

movement leads to lateral motion of a body and impact interaction of its rear end with interior wall of the cavity

(Savchenko, 1998; Savchenko et al., 1999). In this case, the body may undergo steady or decaying periodic lateral

motions accompanied by alternating impacts at the upper and lower walls of the cavity. To reduce losses of energy of

the primary motion and to eliminate possible instability, one should know how to calculate the law of the transverse

movement of the body within the supercavity. The present study is devoted to the generation of solution methods for

this problem and to the production of numerical results illustrating various solution approaches.

Since the longitudinal dimensions of the body and the cavity essentially exceed their transverse dimensions (and the

latter for the body and the cavity slightly differ from each other), it would be appropriate to perform the following

mathematical modelling of the process of impact interaction of the body with the cavity in the supercavitation flow,

which is valid for cross-sections far enough removed from the body ends.

An indefinitely long circular cylindrical cavity with radius Rc in an infinite fluid is considered. The cavity contains a

body shaped as a rigid circular cylinder of radius Rb. The gap between the body surface and the cavity surface is

denoted as d, where d ¼ Rc � Rb. We shall consider the motion in a certain cross-section of the cavity and, therefore, we

restrict ourselves by considering the plane problem. It is assumed that at a certain moment at time t ¼ 0, the body

reaches an interior surface of the cavity and starts penetrating through it with the initial velocity v0 ¼ v0ð0Þ. It is

necessary to determine the hydrodynamic loading acting on the body and the law of body motion.

The body-fluid interaction stipulates, on the one hand, the appearance of acoustic waves, which carry away a portion

of the impact energy and, on the other hand, the change of velocity of the body motion toward motion in the opposite

direction.

The adequate simulation of such a process demands a solution of the coupled system of equations consisting of a

hydrodynamic part, which describes motion of fluid under the impact penetration, and the equations of the body

motion. The specified system should be supplemented with the appropriate boundary and initial conditions. Obviously,

it is necessary to formulate various conditions on the surface of the body-fluid contact and on the free surface of the

cavity. In the contact area, the condition of impermeability of the body surface (equality of normal to the surface

velocities of the body and the fluid is naturals); on the free surface of the cavity, the pressure should be constant (for

simplicity it is possible to accept it as zero).

It is necessary to notice that, during penetration of the body into the fluid, the position of boundary points on the

cavity surface separating the area of contact from the action free area is not generally given; the mentioned points move

along the surface with an unknown velocity and their position is determined at each time instant from the solution of

the general coupled problem.

Initial conditions are also obvious; for the body, the initial position and the initial value of velocity v0 ¼ v0ð0Þ are

given. Here v0ðtÞ is the required velocity of the body penetration into the fluid medium, while at the initial time instant,

the fluid is at rest.

We assume that, in contrast to the longitudinal motion, the velocity of lateral motion of the body in the cavity v0 is

much less than the sound velocity in the fluid (nevertheless, for the purpose of considering a part of the impact energy

carried away by acoustic waves, we shall not neglect compressibility of the fluid), with viscosity being negligibly small.

In effect, one can consider the fluid as an ideal compressible one. It is natural to suppose, that the depth of body

penetration through the initial cavity surface is small. It allows one to use a linear wave equation (a so-called acoustic

approximation) for the description of fluid motion (Morse and Feshbach, 1958) and, in addition, to prescribe the

boundary conditions on an undistorted surface of the cavity.

Thus, the above considerations allow one to formulate the initial mixed boundary value problem with the previously

unknown space- and time-changing boundary.
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Fig. 2. Scheme of impact interaction of cylindrical body with the surface of cavity.
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Let us initiate the mathematical formulation of the problem, the geometrical parameters of which are shown in Fig. 2.

We shall introduce dimensionless variables for subsequent consideration:

x ¼
x

Rc

; z ¼
z

Rc

; r ¼
r

Rc

; t ¼
Ct

Rc

; p ¼
p

rC2
; V ¼

V

C
; m ¼

m
prR2

c

; F ¼
F

rC2Rc

. (2.1)

Here, x, z are Cartesian coordinates, r, y are polar coordinates (the z-axis coincides with the direction of the body lateral

motion) with a pole at the center of the cavity, t is time, p is hydrodynamic pressure, V is velocity of cavity surface

deformation, C is sound velocity, r is fluid density, Rc is a certain linear dimension (the radius of the cavity), m is the

lineal mass of the body (according to Eq. (2.1), it is referred to a mass of the fluid displaced by the body per unit of

length), and F is hydrodynamic force. Dimensionless notation (2.1) is used in what follows, therefore overbars are

omitted.

The motion of the ideal compressible fluid is described by the wave potential, which satisfies the equation

@2j
@r2
þ

1

r

@j
@r
þ

1

r2
@2j

@y2
�
@2j
@t2
¼ 0 (2.2)

and the pressure and velocity of the fluid are defined by

p ¼ �
@j
@t
; V ¼ gradj

Let us formulate the boundary conditions on the surface of the cavity r ¼ 1. As shown in Fig. 2, the points with the

values of polar angle y* and �y* separate the contact area of the body with the cavity from the free surface of the

cavity. Thus, the boundary condition in the contact area consisting of equality of normal velocities is the following:

@j
@r

����
r¼1

¼ v0ðtÞ cos y; jyjoy�. (2.3)

The second condition, imposed on the desired solution in the contact area, suggests the impossibility of the

appearance of areas with negative pressure

pjr¼1X0; jyjoy�. (2.4)

On the free part of the surface of the supercavity, a pressure

@j
@t

����
r¼1

¼ 0; jyj4y� (2.5)

is given.
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Expressions (2.3)–(2.5) consider the present symmetry with respect to z. It is also necessary to take into account the

damping condition of wave disturbances at infinity

j! 0; r!1 (2.6)

The initial conditions for the potential of initially rest fluid are

jjt¼0 ¼
@j
@t

����
t¼0

¼ 0 (2.7)

Finally, the equation of body motion is

m
dv0ðtÞ

dt
¼ �

F ðtÞ

p
; v0ð0Þ ¼ v0, (2.8)

Here, F(t) is hydrodynamical force of fluid resistance (the drag) to the lateral motion of the body, which can be

calculated as:

F ðtÞ ¼ 2

Z y�

0

pðt; yÞ cos y dy. (2.9)

Let us recall that pðt; yÞ is the fluid pressure in the contact area.

The angle y* is a polar angle of an intersection point of the circle—the boundary of the supercavity and the circle,

which is the contour of the body; it is determined from a geometrical problem depending on the ratio of characteristic

dimensions of the cavity, body as well the unknown depth of penetration z� ¼
R t

0 v0ðtÞ dt as follows:

y� ¼ arccos
ðz�Þ2 þ 2dðz� þ 1Þ

2ðd þ z�Þ

� �
. (2.10)

It must be noted that this relation does not take into account the so-called opposing motion of the liquid, which can

vary the contact domain. But, during an early stage of the process of interaction, the contact domain varies rapidly

(even with supersonic velocity at an initial time interval), and the liquid compressibility is a more important factor in

comparison to the opposing motion (Logvinovich, 1969). Therefore, it can be expected that Eq. (2.10) is approximately

true for determining the contact area.

It is necessary to note, that the dimensionless gap d is defined as d ¼ 1� Rb=Rc.

Relations (2.2)–(2.10) represent a mathematical formulation of the considered problem. In a general case, the

problem is nonlinear due to imposed condition (2.4), and also because, specifically, the equation of motion (2.8) on its

right-hand side contains complicated functional dependence on the penetration depth z* (see Eq. (2.10)), which in turn

is determined through the sought velocity of the body motion v0ðtÞ.

The character of lateral movement of the body in the cavity, as well as the overall movement, essentially depends on

the dimension of the gap between the surface of the body and the cavity (Putilin, 2000). Generation of the motion with

minimal gap can require less consumption of energy. On the other hand, minimal gap is fraught with the possibility of

washing a front part of the body surface with the flow even under small deviation of the body axis from the movement

direction, and, as a result, with the loss of stability. A finite gap is less advantageous in terms of energy, but it provides

steadiness. Advantages and disadvantages of both variants show the expediency of investigating a lateral motion for

each of the variants. The peculiarities of impact interaction between the body and the surface of the cavity with a small

and sizable gap require development of relevant approaches to the solution of the problem for each of the cases. The

difference between the approaches is determined by the natural assumptions, which are valid for each of them. Hence, if

the gap between the body and the surface of the cavity is small, the contact area appearing at the instant of impact will

be curvilinear, comparable to the specific cross-dimension of the cavity, and developing from the point of initial contact

to certain final dimensions corresponding to the maximal body penetration into the fluid. For an extreme case, based on

the assumption that the gap dimension is negligibly small, the surface of the contact is constant and takes up half of the

cavity cross-section. Finally, in the case when radius of the body cross-section differs from the radius of the cavity cross-

section by a certain finite quantity, the contact area is small, compared to relevant dimension of the problem; its

curvature is also small, and it can be treated as flat.

Considering these factors, we develop various approaches depending on the dimension of the gap between the body

surface and the cavity surface at rest.
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3. Small gap case

If the gap d between the cavity and the body at rest is small, but is not equal to zero, the area of the body-fluid contact

which appears in the process of impact will not be small. Additionally, it is obvious that the contact area will be variable

in a time curvilinear surface.

First, let as present the solution of a supplementary problem for the wave equation (2.2), which allows one to connect

the pressure and velocity of the motion on the surface of the cavity. Let us assume that, on this surface, the pressure is

given in the form of certain function Pðt; yÞ:

�
@j
@t

����
r¼1

¼ Pðt; yÞ. (3.1)

Let us also suppose, that function Pðt; yÞ is represented by the Fourier series

Pðt; yÞ ¼
X1
n¼0

PnðtÞ cos ny, (3.2)

and the initial conditions are zero. To solve the given problem, a Laplace integral transformation with respect to t with

parameter s is applied to Eq. (2.2) (Bateman and Erdelyi, 1954). The corresponding transforms (images) we denote by

the superscript L:

f L
ðsÞ ¼

Z 1
0

e�stf ðtÞ dt.

Equation (2.2), due to zero initial conditions (2.7), has the following form in image space:

@2jL

@r2
þ

1

r

@jL

@r
þ

1

r2
@2jL

@y2
� s2jL ¼ 0, (3.3)

and its general solution, with dissipation at infinity (requirement (2.6)), is (Morse and Feshbach, 1953)

jL ¼
X1
n¼0

AnðsÞKnðsrÞ cos ny. (3.4)

Here, Kn(sr) are McDonald cylindrical functions of an imaginary argument (Bateman and Erdelyi, 1953), and An are

undefined coefficients.

The pressure and the velocity of the fluid movement can be presented in the form of a Fourier series

pðt; yÞ ¼
X1
n¼0

pnðtÞ cos ny; V ðt; yÞ ¼
X1
n¼0

VnðtÞ cos ny. (3.5)

Then, from the boundary condition (3.1) we obtain a Fourier series component for the image of velocity on the surface

of the fluid will be of the form

VL
n ðsÞ ¼ �PL

n ðsÞ
K0nðsÞ

KnðsÞ
, (3.6)

where K0nðsÞ ¼
@
@r
KnðsrÞ

� �
r¼1

. This expression can be modified as follows:

VL
n ðsÞ ¼ �PnðsÞ

KnðsÞ �KnðsÞ þK0nðsÞ

KnðsÞ
,

or

VL
n ðsÞ ¼ PL

n ðsÞ � PL
n ðsÞR

L
n ðsÞ,

where

RL
n ðsÞ ¼ �

KnðsÞ þK0nðsÞ

KnðsÞ
. (3.7)
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Applying the convolution theorem of operational calculus (Bateman and Erdelyi, 1954) the expression can be

rewritten in the original space as follows:

VnðtÞ ¼ PnðtÞ þ

Z t

0

PnðtÞRnðt� tÞdt, (3.8)

where Rn(t) is the original form of the function RL
n ðsÞ—see (3.7), the determination of which is presented in Appendix A.

The relation (3.8) allows us to determine the movement velocity of the cavity surface, if pressure is given on this surface:

V ðtÞ ¼ PðtÞ þ
X1
n¼0

Z t

0

PnðtÞRnðt� tÞ dt cos ny. (3.9)

The obtained solution of the supplementary problem is used for the solution of the original mixed problem. From

boundary conditions (2.3) and (2.5), and using expressions (3.5) and (3.8), we obtain

X1
n¼0

pnðtÞ cos nyþ
X1
n¼0

Z t

0

pnðtÞRnðt� tÞ dt cos ny ¼ v0ðtÞ cos y; jyjoy�,

X1
n¼0

pnðtÞ cos ny ¼ 0; jyj4y�,

or making it more compact,

X1
n¼0

pnðtÞ cos ny ¼ Hðyn � jyjÞ v0ðtÞ cos y�
X1
n¼0

Z t

0

pnðtÞRnðt� tÞ dt cos ny

" #
, (3.10)

where HðxÞ ¼
1; x40;

0; xo0

(
is the unit Heaviside function.

The right-hand side of the expression (3.10) as a function of angle variable y can be presented in the form of a Fourier

series. Then, taking into account the orthogonality of the Fourier series and uniqueness of the expansion, it is possible

to equate the coefficients of equal harmonics of the left- and right-hand parts. As a result, for the determination of

unknown coefficients of Fourier series for pressure on the cavity surface, we have a resolving infinite system of integral

Volterra equations of the second kind

pnðtÞ ¼ v0nðtÞ �
X1
m¼0

bmnðy
�
Þ

Z t

0

pmðtÞRmðt� tÞ dt; n ¼ 0; 1; . . . ;1, (3.11)

with

v0nðtÞ ¼
v0ðtÞ

p
Wn, (3.12)

Wn ¼

sin y�; n ¼ 0;

y� þ
sin 2y�

2
; n ¼ 1;

sinðnþ 1Þy�

nþ 1
þ
sinðn� 1Þy�

n� 1
; n41;

8>>>>><
>>>>>:

bmnðy
�
Þ ¼

y�

p
; n ¼ m; n ¼ 0;

sin my�

pm
; ma0; n ¼ 0;

1

p
y� þ

sin 2my�

2m

� �
; n ¼ m; na0;

1

p
sinðnþmÞy�

nþm
þ

sinðm� nÞy�

m� n

� �
; nam; na0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(3.13)

Thus, the solution of the system (3.11) allows us to calculate the pressure on the cavity surface. The velocity of surface

motion is calculated by means of formulas (3.8) or (3.9). Note that the system (3.11) should be solved jointly with
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condition (2.10) and the equation of body movement, which in this case has the form

m
dv0ðtÞ

dt
¼ �

1

p

X1
n¼0

pnðtÞWn; v0ð0Þ ¼ v0. (3.14)

In conclusion, it is necessary to mention that, for the development of the infinite system of equations of the form

(3.11), one can use the solution of the other subsidiary problem, if, unlike the expression (3.1), pressure is given at the

cavity surface:

@j
@r

����
r¼1

¼ V ðt; yÞ; V ¼
X1
n¼0

VnðtÞ cos ny. (3.15)

The solution of boundary problem (3.15) allows one to obtain coefficients of the Fourier series for the pressure

through coefficients Vn(t) in the following form:

PnðtÞ ¼ VnðtÞ þ

Z t

0

VnðtÞR̄nðt� tÞ dt,

where the kernel R̄nðtÞ is determined as the original of the expression

R̄
L

n ðsÞ ¼ �
KnðsÞ þK0nðsÞ

K0nðsÞ
.

Correspondingly, the pressure is determined through velocity V ðt; yÞ with the expression

PðtÞ ¼ V ðtÞ þ
X1
n¼0

Z t

0

VnðtÞR̄nðt� tÞ dt cos ny. (3.16)

Expression (3.15), used together with the expression (2.5) and satisfying mixed boundary conditions (2.3), (2.5), for

determination of the coefficients Vn(t), allows one to obtain the infinite system of Volterra integral equations of the

second kind

VnðtÞ ¼ v0nðtÞ �
X1
m¼0

b̄mnðy
n
Þ

Z t

0

VmðtÞR̄mðt� tÞ dt; n ¼ 0; 1; . . . ;1. (3.17)

Kernel R̄nðtÞ and coefficients v0nðtÞ, b̄mnðy
�
Þ are calculated according to a scheme, analogous to the one presented

previously for the infinite system (2.11), which is why we omit the details of the procedure here.
4. Zero gap case

In this section we assume that the difference between the radii of the cavity and the body is so small that it is possible

to consider them equal (d ¼ 0). In this case, it is obvious that polar angle y*, defining the boundary of the free surface, is
constant and equal to y* ¼ p/2 (here it is necessary to recall the small depth of penetration). The problem definition and

its rigorous solution for zero gap d follows from the relations of previous paragraph, where it is assumed everywhere

that y* ¼ p/2. Then, the resolving infinite system of Volterra integral equations of the second kind is

pnðtÞ ¼ v0nðtÞ �
X1
m¼0

bmn

Z t

0

pmðtÞRmðt� tÞ dt; n ¼ 0; 1; . . . , (4.1)

where

v0n ¼ v0ðtÞxn, (4.2)

xn ¼

1

p
; n ¼ 0;

1

2
; n ¼ 1;

1

p

sinðnþ 1Þ
p
2

nþ 1
þ

sinðn� 1Þ
p
2

n� 1

0
@

1
A; n41;

8>>>>>>>>><
>>>>>>>>>:
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bmn ¼

sin
pm

2
pm

; ma0; n ¼ 0;

1

2
; n ¼ m;

1

p

sinðmþ nÞ
p
2

mþ n
þ

sinðm� nÞ
p
2

m� n

0
@

1
A; nam; na0:

8>>>>>>>>>><
>>>>>>>>>>:

(4.3)

System (3.1) is solved together with the equation of body motion

m
dv0ðtÞ

dt
¼ �

F ðtÞ;

p
v0ð0Þ ¼ v0,

F ðtÞ ¼ p
X1
n¼0

pnðtÞxn. (4.4)

Functions Rn(t), n ¼ 0; 1; . . ., are determined by the formulas obtained in Section 3.

Additionally, we propose a more simplified approximate solution, based on two assumptions, which should not

considerably distort the initial statement and the results assumed. The first of the suppositions, y* ¼ p/2, was already
mentioned above. Also, we assume, that condition (3.5) on the free surface of the cavity can be substituted (with an

error to be estimated later in a rigorous solution of the problem (3.2)–(3.10)) for the condition of its (‘‘rigid screen’’

model)

@j
@r

����
r¼1

¼ 0; jyj4yn. (4.5)

As a result of the introduced assumptions after the application of Laplace integral transformation in time, the problem

is reduced to a solution in the space of images of equation (3.3) with the following boundary condition:

@jL

@r

����
r¼1

¼

vL
0 ðsÞ cos y jyjo

p
2

0; jyj4
p
2

8><
>: (4.6)

As follows from (4.6), the given boundary problem is not mixed anymore. The right-hand side of condition (4.6) can be

presented in the form of a Fourier series

VL ¼ H
p
2
� jyj

� �
vL
0 ðsÞ cos y ¼

X1
n¼0

vL
0nðsÞ cos ny,

vL
0nðsÞ ¼ xnvL

0 ðsÞ. (4.7)

Here, H(x) is the unit Heaviside function. Substituting solution (3.5) into the condition (4.6), we obtain for each n

A0 ¼
vL
0 ðsÞ

psK00ðsÞ
; A1 ¼

1

2

vL
0 ðsÞ

sK01ðsÞ
;

An ¼ xn

vL
0 ðsÞ

sK0nðsÞ
; n ¼ 2; . . . ;1; K0nðxÞ ¼

@

@x
fKnðxÞg,

from which the pressure on the cavity surface is determined, as follows:

pðtÞ ¼
X1
n¼0

pnðtÞ cos ny; pL
0 ðsÞ ¼ �

1

p
vL
0 ðsÞ

K0ðsÞ

K00ðsÞ
;

pL
1 ðsÞ ¼ �

1

2
vL
0 ðsÞ

K1ðsÞ

K01ðsÞ
; pL

n ðsÞ ¼ �xnvL
0 ðsÞ

KnðsÞ

K0nðsÞ
. (4.8)

Again, the problem consists of determination of the originals of functions pL
n ðsÞ, n ¼ 0; 1; . . . ;1. For this purpose, we

multiply the left-hand and right hand parts of expressions (4.8) by e�sK0nðsÞ, employ recursion formulas (3.15) for

representation of K0nðsÞ, and apply the convolution theorem of originals to the result. Thereby, we make use of the

following tabular correspondence between the image and the original, represented by formulas (A.6). As a result, we
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obtain Volterra integral equations of the first kind for determining coefficients pn(t):Z t

0

pnðtÞRnðt� tÞ dt ¼ GnðtÞ; n ¼ 0; 1; . . . ;1, (4.9)

where kernel Rn(t) is determined on the basis of relations (A.6) as

RnðtÞ ¼ �
ðzn

1ðtÞ þ zn
2ðtÞÞðtþ 1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtþ 2Þ

p ,

and the right-hand side Gn(t) represents the convolution of originals of functions vL
0 ðsÞ and Kn(s)

GnðtÞ ¼ �xn

Z t

0

v0ðt� tÞ
zn
1ðtÞ þ zn

2ðtÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtþ 2Þ

p dt. (4.10)

Equation (4.7) has a kernel with weak singularity and can be solved numerically, for instance, by reduction to a system

of algebraic equations with the help of a method described in Kubenko (1979).

There are other methods for the solution of the conversion problem of expressions of the form (4.8); the problem can

be reduced to the solution of a Vorlerra integral equation of the second kind. For this, recalling that at s-N the

relation KnðsÞ=K
0
nðsÞ ! �1, expression (4.8) can be rewritten in the form

pL
n

KnðsÞ �KnðsÞ þK0nðsÞ

KnðsÞ
¼ �xnvL

0 ðsÞ,

or

pL
n 1�

K0nðsÞ þKnðsÞ

KnðsÞ

� �
¼ xnvL

0 ðsÞ. (4.11)

The application of the convolution theorem to (4.11) allows one to obtain the following sequence of integral equations:

pnðtÞ ¼ xnv0ðtÞ �

Z t

0

pnðtÞRnðt� tÞ dt; n ¼ 0; 1; . . . ;1. (4.12)

It is clear, that the problem of kernel image conversion still remains, however, the originals of images such as RnðsÞ ¼

�½K0nðsÞ þKnðsÞ�=KnðsÞ are much smoother functions, than the originals of fraction KnðsÞ=K
0
nðsÞ, which is present

in expressions (4.8), and their extraction should not cause trouble; ways to obtain then will be discussed in the

Appendix A.

It is necessary to recall that expressions (4.9) (or (4.12)) should be solved jointly with the equation of the body

movement.

In the problem statement with zero gap, some corrections are possible if the polar angle of the contact area y* is

determined on the basis of the relation (2.10), from which it follows that at d ¼ 0

yn ¼ arccos
z�ðtÞ

2
. (4.13)

In conclusion, it is necessary to mention that the sequence of integral equations (4.12) (realizing the solution of the

problem with simplified formulation of boundary conditions (4.6)) is derived in a similar way for small finite gap d and

is omitted in this publication for brevity.
5. Asymptotic solution

5.1. Zero gap case

As follows from Section 4, with zero gap in the simplified problem statement, the problem is reduced to the solution

of a sequence of Volterra integral equations (4.9) or (4.12) with a differential equation (2.8). An asymptotic solution of

this problem for very small interaction time can be determined by use of the asymptotic presentation of cylindrical

McDonald functions of large argument (Bateman and Erdelyi, 1953)

KnðsÞ �

ffiffiffiffiffi
p
2s

r
e�sð1þ . . .Þ; K0nðsÞ � �

ffiffiffiffiffi
p
2s

r
e�sð1þ . . .Þ, (5.1)
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which, in accordance with theorem of limiting values of operational calculus, allows one to find the corresponding

originals for a small initial time interval. Thus, as is obvious in Eq. (4.8), in the original space, we obtain the relation

pnðtÞ ¼ xnv0ðtÞ, n ¼ 0; 1; . . . ;1, from which it follows that

p ¼ V ¼ H
p
2
� y

� �
v0ðtÞ cos y, (5.2)

i.e., the pressure is proportional to the velocity (a well-known relation, which in hydro-elasticity and acoustics is called

the hypothesis of a plane wave; it is worth noticing that the given relation is correct only at small values of interaction

time). Thus, from the equation of the body motion, we obtain

m
dv0ðtÞ

dt
¼ �

2v0ðtÞ

p

Z p=2

0

cos2 y dy; v0ð0Þ ¼ v0

or

m
dv0ðtÞ

dt
¼ �

v0ðtÞ

2
; v0ð0Þ ¼ v0. (5.3)

The solution of Eq. (5.3) is v0ðtÞ ¼ v0 e
�t=2m. According to (5.2), the pressure has the same time dependence:

pðtÞ ¼ v0 e
�t=2m (5.4)

Correspondingly, the drag is determined by the formula

F ðtÞ ¼
p
2

v0 e
�t=2m. (5.5)

As it is clear from (5.4), unlike the model of incompressible fluid (which determines the infinitely large value of

hydrodynamical pressure at the initial instant of time), the present approach (taking into account fluid compressibility)

establishes that the pressure at t ¼ 0 has a finite value and decreases with time. It is necessary to remember, however,

that the results presented above are obtained via asymptotic relations (5.1), and are correct only on a small time

interval, starting from the initial contact moment. In fact, the obtained solution (5.4) and (5.5) does not define the

motion of the body during a considerable time interval. Its clarification requires the solution of integral equations (4.7),

(or (4.10)) or, even better, the solution of infinite system of Volterra integral equations.

If the boundary of the contact area is determined according to (4.13), the drag can be determined as

F ðtÞ ¼ �2v0ðtÞ

Z y�

0

cos2 y dy, (5.6)

and for the determination of the penetration velocity, we obtain the system of two differential equations of the 1st order

dz�ðtÞ

dt
¼ v0ðtÞ,

m
dv0ðtÞ

dt
¼ �

v0ðtÞ

p
arccos

z�ðtÞ

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

z�ðtÞ

4

r !
,

z�ð0Þ ¼ 0; v0ð0Þ ¼ v0. (5.7)

5.2. Small nonzero gap case

If asymptotic expressions (5.1) are applied to relations (3.6), we again obtain the equality pnðtÞ ¼ VnðtÞ, n ¼ 0; 1; . . .
from which follows (5.2). Then, the hydrodynamic force is

F ðtÞ ¼ 2v0ðtÞ

Z yn

0

cos2 y dy,

or

F ðtÞ ¼ v0ðtÞ y� þ
sin 2y�

2

� �
; y� ¼ arccos

ðz�Þ2 þ 2dðz� þ 1Þ

2ðd þ z�Þ

� �
, (5.8)
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and the penetration velocity is determined from the system of differential equations

dz�ðtÞ

dt
¼ v0ðtÞ; m

dv0ðtÞ

dt
¼ �

v0ðtÞ

p
y� þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

y�2

4

s0
@

1
A,

z�ð0Þ ¼ 0; v0ðtÞ ¼ v0. (5.9)

5.3. Finite gap case

If the boundary of the fluid is plane, then it is obvious that

xn ¼ sin yn ¼ sin arccosð1� z�ðtÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z�ðtÞ � ðz�ðtÞÞ2

q
.

For the early stage of interaction, using the asymptotic relations of cylindrical functions, we can obtain relation (5.2),

and the expression for the drag will be of the form

F ðtÞ ¼ 2v0ðtÞ

Z xn

0

cos2 x dx; xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z�ðtÞ � ðz�ðtÞÞ2

q
.

Then, for determination of the penetration velocity, we obtain the following system of equation

dz�ðtÞ

dt
¼ v0ðtÞ,

m
dv0ðtÞ

dt
¼ �

v0ðtÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z�ðtÞ � ðz�ðtÞÞ2

q
þ

1

2
sin 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z�ðtÞ � ðz�ðtÞÞ2

q� �� �
,

z�ð0Þ ¼ 0; v0ð0Þ ¼ v0. (5.10)

Thus, systems of differential equations (5.3), (5.7), (5.9), (5.10) allow one to calculate the velocity of movement and

the hydrodynamic force at the earliest stages of penetration, with different characteristic ratios between the radius of the

body and radius of the cavity.
6. Numerical solution

The research on the impact process in the general statement is reduced to a joint solution of the infinite system

(sequence) of linear Volterra integral equations of the second kind, (3.11), (4.1) or (4.12), a differential equation of

motion (2.8) similar to (3.14), and relation (2.10) specifying the boundary of the contact area.

The solution of the problem was realized numerically on a finite time interval [0,T], divided into equal parts with step

Dt, and at partition nodes, the required quantities were calculated.

The infinite system (sequence) of integral equations (3.11), (4.1), (4.12), and right-hand side of differential equation

(3.14) were subjected to reduction. The order of reduction N was chosen from the point of view of practical convergence

of the solution. All integrals were calculated by quadratic formulas of left rectangles. As a result, the given system is

reduced to a system of algebraic equations. Differential equation (3.14) is replaced with the difference equation. For

improvement of convergence of the Fourier series, Gibbs s-multipliers were applied

sn ¼

1; n ¼ 0;

sin
pn

N
pn

N

; n ¼ 1;N:

8>>><
>>>:

(6.1)

Kernel RnðtÞ of the infinite system (sequence) of integral equations (4.1), (4.12) is determined from (A.4), where

function Rn1ðtÞ satisfies the Volterra equation of the first kind (A.7). For its calculation, the following approach was

applied: (i) the interval of integration was divided into equal small segments ½tj ; tjþ2�, j ¼ 0; 2; . . .M � 2; (ii) every

integral was substituted for the sum of integrals by the segment of partition ½tj ; tjþ2�; (iii) value Rn1ðtÞ on each interval

½tj ; tjþ2� was assumed constant and was taken outside the integral sign with the value of Rn1ðtjþ1Þ; (iv) integralsR tjþ2

tj
Gnðt� tÞ dt were calculated analytically; (v) as a result of this procedure, Eq. (16) is reduced to a system of linear

algebraic equations with respect to Rn1ðtkÞ with a triangular matrix, where k 2 0;M
2


 �
.
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7. Analysis of the results

In calculations in the interval of time [0;4] the following parameters were modified: the dimensionless linear mass of a

body m ¼ 0.25–20 andN (the motion of the body with constant velocity corresponds to value of m-N); initial velocity

of penetration v0 ¼ 0.01–0.05, gap between the cavity and the body d ¼ 0.2–1.

In Fig. 3, time dependence of hydrodynamic pressure p(t) at the frontal point at different values of the linear mass of

the cylinder is shown (m ¼ 0.5, 1, 2 and N, initial velocity v0 ¼ 0.05, value of the gap between the cavity and the body

d ¼ 0.2).

Fig. 3 shows that the hydrodynamic pressure in the frontal point of the body at time instant t ¼ 0, in accordance with

the hypothesis of a plane wave, is equal to its maximal value of p ¼ rCv0 in dimensional notation. Further, at the initial

stage of the considered time interval, the pressure abruptly falls, and the lighter is the body, the quicker the fall.

Fig. 4 illustrates the time dependence of hydrodynamic pressure at the frontal point for various values of gap d ¼ 0.2,

0.4 and 0.7 (initial velocity v0 ¼ 0.05, and the mass of the body m ¼ 4).

In Fig. 4, we notice that the smaller the gap d, the bigger the hydrodynamic pressure at the frontal point.
Fig. 3. Time dependence of hydrodynamic pressure in frontal point for various m values.

Fig. 4. Time dependence of hydrodynamic pressure in frontal point for various d values.
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Fig. 5 depicts the dependence of the drag F(t) on time for velocity v0 ¼ 0.05 and gap d ¼ 0.2, with various values of

mass m ¼ 0.5, 2, 4 and N.

Fig. 5 shows that
(i)
 the larger value of m at the arbitrary time instant is associated with the larger value of the hydrodynamic force;
(ii)
 the hydrodynamic force on the considered interval of time attains its maximal value. The maximal value attains

quicker if the body is easier one.
Fig. 6 shows the dependence of the drag F(t) on time for velocity v0 ¼ 0.05, mass m ¼ 4, for various values of gap

d ¼ 0.01, 0.05 and 0.2. In Fig. 6, one can see that the larger value of d at an arbitrary time instant is associated with the

smaller value of the drag.
Fig. 5. Dependence of the drag on time for various values of m.

Fig. 6. Dependence of the drag on time for various values of d.
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Fig. 7 presents the comparison of values of the drag F(t) on time interval [0;10] at the penetration of the cylindrical

body with constant velocity v0 through the surface of the cavity. The values were obtained by the use of various models

of fluid; in the present publication, we have a compressible fluid model, while in the paper by Paryshev (2003), we see an

incompressible fluid model. In the calculations, the following values for parameters were used: m-N, v0 ¼ 0.01,

d ¼ 0.01 (in the case of small gap). Curves, marked in the figures as 1 and 2, correspond to the models of compressible

and incompressible fluid, accordingly.

In Fig. 8, an analogous comparison of values of the drag F(t) on the time interval [0;10] at penetration of cylindrical

body with constant velocity v0 through the cavity surface is shown for the gap d ¼ 0.2.
Fig. 7. Comparison of the results obtained for the drag with the use of models of compressible and incompressible fluid (d ¼ 0.01,

v0 ¼ 0.01).

Fig. 8. Comparison of the results obtained for the drag with the use of models of compressible and incompressible fluid (d ¼ 0.20,

v0 ¼ 0.05).
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Figs. 7 and 8 demonstrate that: (i) the value of hydrodynamic force for the case of an incompressible fluid (Curve 2)

at the initial moment of time has a finite jump, and in the case of an compressible fluid (Curve 1), the curve starts from

zero and accomplishes its maximal value at a certain moment of time; this moment occurs later if the gap is larger and it

can continue for 1–3 time units; (ii) a the later stages, both models allow one to obtain results with close values.

Fig. 9 shows the time dependence of motion velocity v0(t) for the initial value v0 ¼ 0.05, gap d ¼ 0.2, values of mass

m ¼ 0.5, 2, 4 and N. It is shown, that the velocity of the cylinder motion essentially depends on its mass; the more

massive is the body, the bigger the velocity.

Fig. 10 represents the time dependence of motion velocity v0(t) for various values of gap d ¼ 0.2, 0.4 and 0.7, if initial

velocity is v0 ¼ 0.05, and mass m ¼ 0.5.
Fig. 9. Time dependence of motion velocity, for various values of m.

Fig. 10. Time dependence of motion velocity, for various values of d.

Fig. 11. Comparison of the results obtained for the pressure with the use of ‘‘general’’ and ‘‘rigid screen’’ statements.
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Fig. 12. Comparison of the results obtained for the drag with the use of ‘‘general’’ and ‘‘rigid screen’’ statements.
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Fig. 10 demonstrates that the larger values of the gap corresponds to the larger values of velocity of the body motion.

The explanation is that with the growth of gap d, the drag preventing the penetration of the body decreases (see Fig. 6).

Fig. 11 shows a comparison of results for hydrodynamic pressure p(t), obtained on time interval [0;4] with the use of

various statements: the ‘‘rigid screen’’ model and the ‘‘general’’ statement with natural boundary conditions on the free

surface of the cavity. The following values for parameters were used in calculations: initial velocity v0 ¼ 0.05, gap

d ¼ 0.2, linear mass m ¼ 0.5 and 4. The curves, marked with a dotted line and firm line on the figure, correspond to the

‘‘rigid screen’’ model and to the ‘‘general’’ statement, accordingly.

Fig. 12 depicts comparison of the results of calculations for hydrodynamic force F(t) for various statements, the

‘‘rigid screen’’ model and ‘‘general’’ statement. The following values of parameters were used in calculations: initial

velocity v0 ¼ 0.05, gap d ¼ 0.2, linear mass m ¼ 0.5 and 4. The curves, marked in the picture with dotted and firm lines,

correspond to the ‘‘rigid screen’’ model and to the ‘‘general’’ statement.

From Figs. 11 and 12, it is obvious that more ‘‘rigorous’’ conditions on the free surface of the cavity raise the values

of the hydrodynamic loadings by too much, but as far as this difference in the values of characteristics is insignificant,

we can recommend the given simplified technique for obtaining an engineering evaluation of process development in

order to considerably reduce the use of computer time.

Fig. 13 illustrates the distribution of hydrodynamic pressure p(t) on the surface of the cavity at time t ¼ 0.5 and 1.5 at

various values of gap d ¼ 0.2 and 0.4, for values of initial velocity v0 ¼ 0.05 and mass m ¼ 4. From Fig. 13, it follows,

that on the considered interval of time, the smaller is the value of gap d, the higher the pressure within the bounds of the

contact area and the bigger the contact area itself.

Fig. 14 represents a comparison of numerical and asymptotical results obtained with the use of a ‘‘rigid screen’’

statement for hydrodynamic force F(t) with zero gap. The values for parameters used in calculations were m ¼ 4,

v0 ¼ 0.001. Curves, marked with dotted and continuous lines in the figure correspond to numerical and analytical

solutions, accordingly.

Fig. 15 shows the comparison of numerical and analytical (asymptotical) results obtained with the use of the ‘‘rigid

screen’’ statement for the velocity of cylinder motion v0(t) for zero gap. The values for the parameters that were used in

calculations are the same: m ¼ 4 and v0 ¼ 0.001. Curves, marked with dotted and firm lines in the figure, correspond to

numerical and analytical results.

Fig. 16 illustrates the comparison of the numerical and analytical results, obtained on time interval [0;1] for

hydrodynamic force F(t) with the small gap. In calculations, we used the following values for parameters: m-N,

d ¼ 0.01, v0 ¼ 0.05. Curves, marked with dotted and continuous lines in the figure, correspond to numerical and

asymptotical results.

From Figs. 14–16, it is obvious that the results obtained asymptotically, are somehow too high for hydrodynamic

loadings and are too low for kinematic ones in comparison with similar numerical results. Taking into account the fact
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Fig. 14. Zero gap: comparison of numerical and asymptotical results obtained for the drag.

Fig. 13. The pressure distribution on the wetted surface of the cylinder.
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that the difference in values of given characteristics is insignificant, we can obtain fast evaluation of process

development, by taking into account the safety margin of construction. It is also possible to recommend the given

simplified technique of solution of the impact interaction problem between the body and the surface of the cavity, since

it will considerably reduce waste of computer time.
6. Conclusions

The approach, developed in the present study allows one to investigate (within the framework of a plane problem) the

process of impact interaction between a thin long cylindrical body and the surface of the cylindrical cavity in an ideal

compressible fluid. Various modifications of the approach are provided depending on the ratio of specific values of the

cross-section of the body and the cavity. In all cases the mixed (or non-mixed) non-stationary boundary value problem
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Fig. 15. Zero gap: comparison of numerical and asymptotical results obtained for the velocity.

Fig. 16. Small gap: comparison of numerical and asymptotical results obtained for the drag.
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with the moving unknown (or known) boundary is formulated, the solution of which, by decomposing the required

quantities in Fourier series and application of the obtained solution of a supplementary problem (Laplace integral

transformation in time is used), is reduced to the solution of the infinite system (sequence) of Volterra integral equations

of the second kind. The given system is a part of the general bound resolving system of equations, also containing the

equation of lateral motion of a body and the relation which defines the boundaries of the contact area. Both

approximate-asymptotic and numerical solutions for the initial stage of interaction are obtained. The comparison of

asymptotic and numerical solutions shows their qualitative correspondence. The evaluation of the degree of boundary

conditions on the free surface of cavity affecting the sought characteristics has been carried out. The use of the

compressible fluid model allows one to obtain results more adequate to the physics of the process at an early stage of the

body-liquid interaction.



ARTICLE IN PRESS
V.D. Kubenko, O.V. Gavrilenko / Journal of Fluids and Structures 25 (2009) 794–814 813
Appendix A

While constructing resolving system (3.11), we omitted the issue of calculation of integral operator kernel—function

Rn(t), n ¼ 0; 1; . . .,—whose Laplace transform is given by the formula (3.7).

Here, we represent an example of the solution of such a non-trivial problem. For this, we shall use the asymptotical

presentation of a McDonald function of large argument (Bateman and Erdelyi, 1954) of the form:

KnðSÞ �

ffiffiffiffiffi
p
2s

r
e�s 1þ

4n2 � 1

8s
þ � � �

� �
; K0nðsÞ � �

ffiffiffiffiffi
p
2s

r
e�s 1þ

4n2 þ 3

8s
þ � � �

� �
. (A.1)

The given asymptotic form allows us to easily write first terms of the asymptotic expansion of function RL
n ðsÞ:

RL
n ðsÞ � �

1
2s
e�s

ffiffiffip
2s

p
ffiffiffip
2s

p
e�s 1þ 4n2�1

8s
þ � � �

� � � 1

2s
1�

4n2 � 1

8s
þ � � � ::

� �
¼

1

2s
�
ð4n2 � 1Þ

16s2
� � � � .

If, in expression (3.7), we select the obtained dominant term of the asymptotic expansion, and additionally use the

recurrence relations for cylindrical functions of the following form:

� 2nKnðzÞ ¼ zKn�1ðzÞ � zKnþ1ðzÞ;
d

dz
KnðzÞ ¼ �Kn�1ðzÞ �

n

z
KnðzÞ,

d

dz
KnðzÞ ¼ �Knþ1ðzÞ þ

n

z
KnðzÞ, (A.2)

we obtain

RL
n ðsÞ ¼

1

2s
�

nþ
1

2

� �
1

s
KnðsÞ þKnðsÞ �Knþ1ðsÞ

KnðsÞ
¼

1

2s
þ RL

n1ðsÞ,

RL
n1ðsÞ ¼ �

nþ
1

2

� �
1

s
KnðsÞ þKnðsÞ �Knþ1ðsÞ

KnðsÞ
. (A.3)

Then

RnðtÞ ¼
1

2
HðtÞ þ Rn1ðtÞ, (A.4)

where function Rn1(t) is quite a smooth function (since, according to formula (4.18), from function Rn(t), the step part is

singled out). Now we need to determine the function Rn1(t). For this purpose, we re-write the second of Eqs. (A.3) as

follows:

esKnðsÞR
L
n1ðsÞ ¼ �e

s nþ
1

2

� �
1

s
KnðsÞ þKnðsÞ �Knþ1ðsÞ

� 
. (A.5)

For the conversion of the expression (A.4) with respect to the Laplace transform we make use of the theorem of

operational calculation convolution (Bateman and Erdelyi, 1954). Here, the conversion of the McDonald function can

be found with the help of relations (Bateman and Erdelyi, 1954; Kubenko, 1979)

esKnðsÞ2
zn
1 þ zn

2

2Z
;

es

s
K0ðsÞ2 ln z1;

es

s
KnðsÞ2

zn
1 � zn

2

2n
,

z1;2ðtÞ ¼ tþ 1� Z; Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ 1Þ2 � 1

q
. (A.6)

Thus, for determination of functions Rn1(t), we obtain a Volterra integral equation of the first kind

Z t

0

Rn1ðtÞGnðt� tÞ dt ¼ gnðtÞ; n ¼ 0; 1; 2; . . . (A.7)
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The kernel and the right-hand side have the form:

GnðtÞ ¼
zn
1ðtÞ þ zn

2ðtÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtþ 2Þ

p ; g0ðtÞ ¼
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tðtþ 2Þ
p �

1

2
lnðz1ðtÞÞ;

gnðtÞ ¼
zn
1ðtÞ þ zn

2ðtÞ

2
ffiffiffiffiffiffiffiffiffiffi
tþ 2
p

ffiffi
t
p
�

zn
1ðtÞ � zn

2ðtÞ

4n
.

Integral equation (A.8) belongs to equations with weak singularity and can be solved numerically, based on the

method presented in Kubenko (1979).

Thus, the kernel in the integral operator of the system (3.11) is determined according to formula (A.4) from the

solution of a sequence of Volterra integral equations of the first kind (A.7).

For more convenient numerical evaluation, the approximate pattern of kernel definition in a system of Volterra

integral equations of the second kind (3.11) can be proposed. With this aim, we use the well-known asymptotic qualities

of cylindrical functions of large index (Abramowitz and Stegun, 1964)

KnðnzÞ �

ffiffiffiffiffi
p
2n

r
e�nZ

ð1þ z2Þ1=4
f1þ � � �g; K0vðnzÞ � �

ffiffiffiffiffi
p
2n

r
ð1þ z2Þ1=4

z
e�nZf1þ . . .g,

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ ln

z

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2
p .

Then, for the kernel Rn(t), we have the following asymptotic for large n:

RL
n ðsÞ ¼ �

K0nðsÞ þKnðsÞ

KnðsÞ
� � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

n

s

� �2r !
¼

n

s

� �2 s

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ n2
p .

The original-space form of the last expression is easily derived with help of

RnðtÞ ¼ n

Z t

0

J1ðntÞ
t

dt. (A.8)

Here, J1(x) is a Bessel cylindrical function (Bateman and Erdelyi, 1953).

Expression (A.8) can be used with sufficiently large n. At small values of n, it is necessary to use the relations (A.4)

and (A.7) or to apply rational approximations to the presentation of McDonald cylindrical functions (Abramowitz and

Stegun, 1964), which at small n provide good accuracy and yield the easy inversion of Laplace transformation—either

with the help of the above integral equations, or through expansion of polynomials into common fractions and use of

residue theory.
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